84 research outputs found

    Limits to coseismic landslides triggered by Cascadia Subduction Zone earthquakes

    Get PDF
    Landslides are a significant hazard and dominant feature throughout the landscape of the Pacific Northwest. However, the hazard and risk posed by coseismic landslides triggered by great Cascadia Subduction Zone (CSZ) earthquakes is highly uncertain due to a lack of local and global data. Despite a wealth of other geologic evidence for past earthquakes on the Cascadia Subduction Zone, no landslides have been definitively linked to such earthquakes, even in areas otherwise highly susceptible to failure. While shallow landslides may not leave a lasting topographical signature in the landscape, there are thousands of deep-seated landslides in Cascadia, and these deposits often persist for hundreds of years and multiple earthquake cycles. Synthesizing newly developed inventories of dated large deep-seated landslides in the Oregon Coast Range, we use statistical methods to estimate the proportion of these types of landslides that could have been triggered during past great Cascadia Subduction Zone earthquakes. Statistical analysis of high-precision dendrochronology ages of landslide-dammed lakes and surface roughness-dated bedrock landslides reveal Cascadia Subduction Zone earthquakes may have triggered 0–15 % of large deep-seated landslides in the Oregon Coast Range over multiple earthquake cycles. Our results refine estimates from previous studies and further suggest that coseismic triggering accounts for a small fraction of the total deep-seated bedrock landslides mapped in coastal Cascadia. However, if the real rate of coseismic landslide triggering during CSZ earthquakes is near our estimated upper bound for the 1700 CSZ earthquake, we estimate up to 2400 coseismic large deep-seated landslides could occur in the Oregon Coast Range in a single earthquake. These findings suggest Cascadia is consistent with global observations from other subduction zones and that coseismic landslides may still represent a serious geohazard in the region

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group

    Proteomic Analysis of Pathways Involved in Estrogen-Induced Growth and Apoptosis of Breast Cancer Cells

    Get PDF
    Estrogen is a known growth promoter for estrogen receptor (ER)-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis.Here, we sought to identify signaling networks that are triggered by estradiol (E2) in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C) versus cells that proliferate upon exposure to E2 (MCF-7). The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1) is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS) at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation.G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen

    Phosphorylation of AIB1 at Mitosis Is Regulated by CDK1/CYCLIN B

    Get PDF
    Although the AIB1 oncogene has an important role during the early phase of the cell cycle as a coactivator of E2F1, little is known about its function during mitosis.Mitotic cells isolated by nocodazole treatment as well as by shake-off revealed a post-translational modification occurring in AIB1 specifically during mitosis. This modification was sensitive to the treatment with phosphatase, suggesting its modification by phosphorylation. Using specific inhibitors and in vitro kinase assays we demonstrate that AIB1 is phosphorylated on Ser728 and Ser867 by Cdk1/cyclin B at the onset of mitosis and remains phosphorylated until exit from M phase. Differences in the sensitivity to phosphatase inhibitors suggest that PP1 mediates dephosphorylation of AIB1 at the end of mitosis. The phosphorylation of AIB1 during mitosis was not associated with ubiquitylation or degradation, as confirmed by western blotting and flow cytometry analysis. In addition, luciferase reporter assays showed that this phosphorylation did not alter the transcriptional properties of AIB1. Importantly, fluorescence microscopy and sub-cellular fractionation showed that AIB1 phosphorylation correlated with the exclusion from the condensed chromatin, thus preventing access to the promoters of AIB1-dependent genes. Phospho-specific antibodies developed against Ser728 further demonstrated the presence of phosphorylated AIB1 only in mitotic cells where it was localized preferentially in the periphery of the cell.Collectively, our results describe a new mechanism for the regulation of AIB1 during mitosis, whereby phosphorylation of AIB1 by Cdk1 correlates with the subcellular redistribution of AIB1 from a chromatin-associated state in interphase to a more peripheral localization during mitosis. At the exit of mitosis, AIB1 is dephosphorylated, presumably by PP1. This exclusion from chromatin during mitosis may represent a mechanism for governing the transcriptional activity of AIB1

    Perceived economic self‑sufficiency: a countryand generation‑comparative approach

    Get PDF
    We thank Michael Camasso and Radha Jagannathan as well as Asimina Christoforou, Gerbert Kraaykamp, Fay Makantasi, Tiziana Nazio, Kyriakos Pierrakakis, Jacqueline O’Reilly and Jan van Deth for their contribution to the CUPESSE project (Seventh Framework Programme; Grant Agreement No. 61325). CUPESSE received additional funding from the Mannheim Centre for European Social Research (MZES) and the Field of Focus 4 “Self-Regulation and Regulation: Individuals and Organisations” at Heidelberg University. We further acknowledge helpful comments on this article by two anonymous reviewers. Julian Rossello provided valuable research assistance.Electronic supplementary material The online version of this article (https ://doi.org/10.1057/ s4130 4-018-0186-3) contains supplementary material, which is available to authorized users.Existing datasets provided by statistical agencies (e.g. Eurostat) show that the economic and financial crisis that unfolded in 2008 significantly impacted the lives and livelihoods of young people across Europe. Taking these official statistics as a starting point, the collaborative research project “Cultural Pathways to Economic Self-Sufficiency and Entrepreneurship in Europe” (CUPESSE) generated new survey data on the economic and social situation of young Europeans (18–35 years). The CUPESSE dataset allows for country-comparative assessments of young people’s perceptions about their socio-economic situation. Furthermore, the dataset includes a variety of indicators examining the socio-economic situation of both young adults and their parents. In this data article, we introduce the CUPESSE dataset to political and social scientists in an attempt to spark a debate on the measurements, patterns and mechanisms of intergenerational transmission of economic self-sufficiency as well as its political implications.CUPESSE project (Seventh Framework Programme; Grant Agreement No. 61325

    Manajemen Sumber Daya Manusia Strategik

    No full text

    Limits to coseismic landslides triggered by Cascadia Subduction Zone earthquakes

    Get PDF
    Landslides are a significant hazard and dominant feature throughout the landscape of the Pacific Northwest. However, the hazard and risk posed by coseismic landslides triggered by great Cascadia Subduction Zone (CSZ) earthquakes is highly uncertain due to a lack of local and global data. Despite a wealth of other geologic evidence for past earthquakes on the Cascadia Subduction Zone, no landslides have been definitively linked to such earthquakes, even in areas otherwise highly susceptible to failure. While shallow landslides may not leave a lasting topographical signature in the landscape, there are thousands of deep-seated landslides in Cascadia, and these deposits often persist for hundreds of years and multiple earthquake cycles. Synthesizing newly developed inventories of dated large deep-seated landslides in the Oregon Coast Range, we use statistical methods to estimate the proportion of these types of landslides that could have been triggered during past great Cascadia Subduction Zone earthquakes. Statistical analysis of high-precision dendrochronology ages of landslide-dammed lakes and surface roughness-dated bedrock landslides reveal Cascadia Subduction Zone earthquakes may have triggered 0–15 % of large deep-seated landslides in the Oregon Coast Range over multiple earthquake cycles. Our results refine estimates from previous studies and further suggest that coseismic triggering accounts for a small fraction of the total deep-seated bedrock landslides mapped in coastal Cascadia. However, if the real rate of coseismic landslide triggering during CSZ earthquakes is near our estimated upper bound for the 1700 CSZ earthquake, we estimate up to 2400 coseismic large deep-seated landslides could occur in the Oregon Coast Range in a single earthquake. These findings suggest Cascadia is consistent with global observations from other subduction zones and that coseismic landslides may still represent a serious geohazard in the region.24 month embargo; available online: 03 October 2022This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Antitumor activity of UCN-01 in carcinomas of the head and neck is associated with altered expression of cyclin D3 and p27KIP1.

    No full text
    Altered and deregulated cyclin-dependent kinase (cdk) activity is now believed to play a major role in the pathogenesis of head and neck squamous cell carcinomas (HNSCC), thus providing a suitable cellular target for therapeutic intervention. UCN-01 (7-hydroxy-staurosporine), a known protein kinase C and cdk modulator, demonstrates antiproliferative and antitumor properties in many experimental tumor models and may represent a potential candidate to test in HNSCC. In this study, UCN-01 displayed potent antiproliferative properties (IC50 of &sim;17&ndash;80 nm) in HNSCC cells. Cell cycle analysis revealed that UCN-01 treatment of HNSCC cells for 24 h leads to a G1 block with a concomitant loss of cells in S and G2-M and the emerging sub-G1 cell population, confirmed to be apoptotic by terminal deoxynucleotidyl transferase-mediated nick end labeling analysis. Additional in vitro studies demonstrated a G1 arrest that was preceded by depletion in cyclin D3, elevation of p21WAF1 and p27KIP1 leading to a loss in activity of G1 cdks (cdk2, cdk4), and reduction in pRb phosphorylation. Antitumor properties of UCN-01 were also assessed in vivo by treating HN12 xenografts (7.5 mg/kg/i.p./daily) with UCN-01 for 5 consecutive days. Total sustained abolition of tumor growth (P &lt; 0.00001) was obtained with only one cycle of UCN-01 treatment. Terminal deoxynucleotidyl transferase-mediated nick end labeling staining of xenograft samples revealed a higher incidence of apoptosis in treated tissues when compared with control. Additional tissue analysis demonstrated that elevated p27KIP1 with minimal increase in p21WAF1 and reduced cyclin D3 levels were readily detected in those animals treated with UCN-01, similar to those observed in HNSCC cells. Thus, UCN-01 exhibits both in vitro and in vivo antitumor properties in HNSCC models, and these effects are associated with a decrease in cyclin D3 and an increase in p27KIP1 protein levels, thus providing appropriate surrogate markers to follow treatment efficacy in vivo and, therefore, a suitable drug candidate for treating HNSCC patients
    corecore